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The recent letter by Pidaparti and Afolabi [1] discussed the potential use of eigenvectors
to predict the onset of flutter in non-conservative systems. An alternative application of
the eigenvectors for the same purpose is described here.

Consider a system governed by the matrix equation of motion

Mẍ(t)+ (U− pL)x(t)=0, (1)

where M and U are symmetric, positive-definite matrices, L is not symmetric, and p is a
load parameter. It is assumed that the system is stable until p reaches the flutter load pf ,
at which two vibration frequencies coalesce and coupled-mode flutter occurs. If one
considers the motion x(t)= c exp(ivt), equation (1) becomes

(U− pL−v2M)c=0 (2)

and the adjoint system can be written as

(U− pLT −v2M)d=0, (3)

where d can be interpreted as the left eigenvector of equation (2).
At p= pf , the right and left eigenvectors of system (2) will be denoted c= cf and d= df ,

respectively. Define the function

g(c, d)= dTMc. (4)

At the flutter load pf [2],

g(cf , df )=0. (5)

Hence the magnitude of g(c, d), which is a function of the eigenvectors, may be used as
a measure of the closeness of the system to the onset of flutter.

Two simple examples are considered. The first is a double pendulum subjected to a
tangential tip load P. The bars have equal lengths b and equal masses m at their ends,
and rotational springs with equal stiffnesses k act at the base and the internal hinge. If
the co-ordinates are the angles of the bars from the vertical, if v2 is replaced by the
non-dimensional quantity v2mb2/k, and if p=Pb/k, then the matrices are [3]

M=$2 1
1 1%, U=$ 2 −1

−1 1%, L=$1 −1
0 0%. (6)

The flutter load is pf =2. For pQ 2, if the eigenvectors corresponding to the lower
frequency are normalized by cTc=1 and dTd=1, then the variation of g(c, d) as a function
of p is shown in Figure 1. As flutter is approached, the magnitude of g decreases and
approaches zero.
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Figure 1. Variation of g as a function of non-dimensional load p.

Figure 2. Variation of g as a function of non-dimensional dynamic pressure p.

The second example involves flutter of a simply-supported panel with infinite aspect
ratio, subjected to a supersonic flow over one surface. Galerkin’s method is applied, using
the first two sine functions satisfying the boundary conditions [4, 5]. The resulting matrices
are

M=$1 0
0 1%, U=$1 0

0 16%, L=$ 0 1
−1 0%, (7)

where p is a non-dimensional dynamic pressure parameter and v is a non-dimensional
frequency. In this case, pf =7·5. With the same choice and normalization of c and d as
in the first example, the resulting plot of g(c, d) is presented in Figure 2. The magnitude
of g provides a measure of the distance from the onset of flutter.

Some continuous, non-conservative systems exhibiting coupled-mode flutter obey an
instability criterion similar to equation (5), involving eigenfunctions of both the system and
its adjoint [6]. Hence the type of procedure described here may also be applicable for
continuous systems.
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We thank Professor Plaut for his interest in our paper. The function defined in terms of
right and left eigenvectors by Professor Plaut seems to yield qualitatively similar results,
in the pre-flutter regime, to the angle between the eigenvectors as defined in our paper.
In general, it seems that the eigenvectors may have a role to play in predicting the onset
of flutter in aeroelastic systems.


